
A Generic Legality Checker and Attribute Evaluator for a
Distributed Enterprise Environment

Christos Goumopoulos, Panayiotis Alefragis, Kleanthis Thrampoulidis, Efthymios Housos
Department of Electrical & Computer Engineering, Computer Laboratory

University of Patras, GR-265 00 Rio Patras, Greece
{goumop,alefrag,thrambo,housos}@ee.upatras.gr

Abstract

The present state of communication networks with
respect to speed and reliability and the recent growth of
distributed applications have created a need for a global
enterprise solution to the legality checking and attribute
evaluation requirement. Traditionally, the mainframe
systems provided the cohesion of all the processes with
respect to the company regulations. When decentralized
systems and applications became widely used the legality
checking mechanism lost its central role and became a
necessary component for every decentralized system. In
this paper a methodology to reconnect these systems with
respect to their legality checking and attribute evaluation
needs is presented. A generic Legality Checking system
has been developed and integrated with scheduling
systems of the airline domain. It is shown that the client-
server model adopted can bring back in a flexible manner
the lost homogeneity of the central legacy systems.

1. Introduction

Manpower scheduling and administration is a difficult
and time consuming process [10]. The situation is further
complicated from the fact that the schedules must satisfy
many and sometimes intricate operational constraints. All
airlines, for example, must conform to a complex set of
union, company and governmental rules and regulations
[9]. These rules vary by crew type (pilot or flight
attendant), crew size, aircraft type, and type of operation
(domestic or international). Work rules, as an example,
concern duty periods and rests. A stringent union rule
specifies maximum duty period length, which varies
between 14 and 16 hours. Other duty rules govern the
maximum flying time allowed and the maximum number
of flights permitted. The governmental regulations mini-
mize crew fatigue and ensure passenger safety. Minimum

rest requirements are tied to the flying time scheduled in a
moving 24-hour window. In addition, the after the actual
event costing and reporting involved, requires the use of
complex rules and formulas and must be also supported
by specific rule knowledge. This is due to the fact that
changes of the planned work might have happened during
the actual operation of the schedule.

Scheduling computer applications are of primary
importance because the cost of the human resources is
extremely high. For instance, in the airline industry crew
costs are the second largest operating expenses after the
fuel costs. In recent years, many of the European airline
companies have invested in automatic tools for resource
planning and scheduling [14]. However, resource manage-
ment is quite complex and none of the computer systems
which currently exist has been designed to address the
total problem. It is therefore necessary to divide the
resource management task into more manageable compo-
nents and use special applications and different computers
for the various components. Working with Lufthansa
German airlines, in the context of the DAYSY Esprit
project [5] it was discovered that at least six different
systems are employed by several departments for planning
purposes [6], such as crew planning and scheduling,
aircraft scheduling and real time rescheduling that do
require the evaluation and testing of the rules (Figure 1).
Since these systems were developed by different vendors
and by the airlines themselves they do not utilize the same
legality checking approach. There is no central system to
provide a common mechanism for the legality checking
needed for all the applications. As a consequence many
rules have to be replicated and implemented differently
and the management of the rules becomes painful.

In this paper a global enterprise legality server is
proposed, that scheduling applications and other support
systems (i.e., accounting, reporting, spreadsheets, mana-
gement tools) which require the rules, could utilize
independently of the hardware platform, database and
operating system used. The system follows the
client/server model. Clients may connect concurrently

with the server and use its legality checking and attribute
evaluation services. Each client may load its own selected
rule-set and utilize its own database system for retrieving
application and problem specific information. The
experience and lessons of the airline industry segment
should be directly applicable to other industries with
complex rules for their man-power organization and
planning (e.g., manufacturing, distribution, transportation,
construction and various public agencies).

)/,*+7 6&+('8/(

�7LPHWDEOH�
$,5&5$)7 �$&�

6&+('8/,1*

&5(:

6&+('8/,1*

5($/ 7,0(

5(6&+('8/,1*

0$132:(5

3/$11,1*

&5(:

3$,5,1*6

*(1(5$7,21

&UHZ 3DLULQJV

ROSTERING
or CREW

ASSIGNMENT

58/(6
�*RYHUQPHQW�
&RPSDQ\�
8QLRQ� HWF��

&UHZ %LGGLQJV

*URXQG $FWLYLWLHV

7UDLQQLQJ 6FKHGXOH

&UHZ 9DFDWLRQV

&5(: 5(&25'6
0HGLFDO�7UDLQLQJ ([SLULHV
/LFHQFH�3DVVSRUW�9LVD

'$,/< &5(:�$&

5(6&+('8/,1*

$& URWDWLRQV

58/(6

H�J�� 5HPDLQLQJ

$& IOLJKW KRXUV

58/(6
�*RYHUQPHQW�
&RPSDQ\�
8QLRQ� HWF��

� &UHZ 6FKHGXOH 9DOLGDWLRQ

�)OLJKW &RYHUDJH &RQWURO

� &UHZ 5HDVVLJQPHQWV

� &UHZ 1RWLILFDWLRQ

� *UDSKLFDO $& 0RYHPHQW 'LVSOD\

� 'HOD\ 0LQLPL]DWLRQ

� $LUFUDIW 6XEVWLWXWLRQV

�)OLJKW &DQFHODWLRQV� 'LYHUVLRQV� HWF�

�)OLJKW 6FKHGXOH

&KDQJHV

� &UHZ 'LVUXSWLRQV

0RQWKO\ &UHZ
6FKHGXOH

FLEET
ASSIGNMENT

'$,/<�:((./<

$66,*10(176 2)

)/,*+76 72

(48,30(17

58/(6 H�J��

$& 5HVWULFWLRQV

E\ (QJLQHHULQJ

'DLO\�:HHNO\
$LUFUDIW 6FKHGXOH

)LJXUH �� 5HVRXUFH SODQQLQJ DQG UXOH FKHFNLQJ
UHTXLUHPHQWV LQ DLUOLQH LQGXVWU\

The rest of the paper is organized as follows. Section 2
introduces the generic Legality Checking and Attribute
Evaluation system. This system is currently being used in
production by Lufthansa for the legality checking
component of the rescheduling process. In Section 3, the
abstract database access feature and the capability of a
user programmable activity model are presented. The
integration of the system with scheduling and other
personnel management applications is explained in
Section 4. Metrics of the system are given in Section 5.
Finally, conclusions with emphasis on the progress and
future directions for the improvement of such an
environment at Lufthansa are discussed, in Section 6.

2. Legality Checking and Attribute
Evaluation (LC) System

Most of the existing computer scheduling systems
check the legality of the produced solution using a few
external parameters for the customization of the system
and include the implementation of the rules within the
application software. However, since labor rules are
continuously changing, there is a need for a high level
domain specific language in order to express and manage

these rules. Two systems that use a special purpose
language for the expression and subsequent management
of rules are presented in [3] and [16]. In this case, using
an application specific language as an interface, the user
is able to change not only the parameters but also the
structure of the rules. The important benefit of this
approach is in the ability to perform what-if scenarios and
test for rule extensions and additions without changing the
application programs.

The development of a generic LC system entailed the
identification of the information that would enable the
domain-specific planner to easily express the regulations
of the problem. The most difficult part of the development
of the LC was the acquisition of this knowledge. Applying
domain analysis to the scheduling problem domain an
object meta-model was created [16], the main part of
which is depicted in Figure 2. The basic building elements
of the meta-model are activities, properties, time-
windows, and rules. At this time it was apparent that the
evaluation of activity properties was at the core of the LC
development. These attributes and their distinct entity
appearance in the meta-model provides the infrastructure
for their individual calculation which is responsible for
the attribute evaluation flavor of the produced system.

Activity
chain

Primitive
Activity

Composite
Activity

Activity
Composition

Rule

 Property
 Calculation

Rule

 Property
Constraint

Rule

Complex
Property

 Primitive
Property

PropertyActivity

{1+}

Rule

{1+}

RuleSet

{1+}

Resource

TimeWindow

 FixedTime
Window

 FlyingTime
Window

start

end

)LJXUH �� 2EMHFW PHWD�PRGHO RI WKH /& V\VWHP

For the defined meta-model to be easily applied to a
wide range of application domains a two step process
must be followed (Figure 3). In the first step, specific
problem domain experts (airline experts in our case) apply
domain analysis to create the airline object-model as an
instance of the generic meta-model. This model contains
declarations of airline generic activities, properties, rules
and problem domain keywords. In the second step, the
specific application rule manager (e.g., Lufthansa’s rule
manager) specializes and refines the airline object-model
in order to produce Lufthansa’s application object model.
However, from the users point of view, the definition of
these object-models in terms of a general purpose

programming language is very difficult and often requires
external support. This was the motivation for the defini-
tion of the high level rule language REDOM [15].

PHWD�

PRGHO

$LUOLQH

2EMHFW�

PRGHO

/XIWKDQVD
V

$SSOLFDWLRQ

2EMHFW�PRGHO

3UREOHOP 'RPDLQ

([SHUW
V .QRZOHGJH

$SSOLFDWLRQ 'RPDLQ

8VHU
V .QRZOHGJH

)LJXUH �� *HQHUDWLRQ SURFHVV RI WKH
DSSOLFDWLRQmV REMHFW PRGHO

Using REDOM the rule manager easily transforms the
generic model to an application specific model. In the
airline domain, for instance, some specific entities to be
modeled are flight activity, shift activity, maximum duty
time regulation, minimum rest time per 24 hours
regulation, etc. REDOM language does provide all the
appropriate lexical and syntactical structures, as well as
the appropriate semantics [7] for the instantiation of the
meta-model of Figure 2.

For the translation of the REDOM programs to
executable code a compiler was created. The REDOM
compiler implements the front end of the REDOM
language translation and produces an intermediate C++
code from the original REDOM source. C++ provides
high-level abstractions with the efficiency of a low-level
language like C. The back end of the compilation process
is assigned to the corresponding C++ compiler of the
target machine. This scheme enables portability of the
REDOM compiler, and the use of optimization techniques
provided by C++ compilers. The produced object code is
finally linked with the LC Interface library and the LC
Kernel library, generating the LC run-time system (Figure
4). The LC Interface library implements the message
protocol for the communication with the scheduling
applications while the LC Kernel library contains the
fixed part of the LC.

5('20

FRPSLOHU

&��

FRPSLOHU
/LQNHU

/& .HUQHO

/LEUDU\

/& ,QWHUIDFH

/LEUDU\

5('20

SURJUDP &��

2EMHFW

FRGH

UXQ�WLPH

V\VWHP

$SSOLFDWLRQ
'RPDLQ

&RQILJXUDWLRQ

)LJXUH �� %XLOGLQJ WKH /& UXQ�WLPH V\VWHP

The basic components of the LC architecture are the

Message Dispatcher, the Activity Recognizer the Attribute
Evaluator, the Rule Checking Mechanism and the On-line
Rule Data-Part Manager as shown in Figure 5.

The Message Dispatcher component is the interface
with the external world. It receives requests from the
scheduling application and sends back responses through
a message protocol. The requests are satisfied by calling
the corresponding methods. These methods constitute the
LC API, that provides the legality checking, the attribute
evaluation and the on line data-part management services.

$FWLYLW\

5HFRJQL]HU

5XOH

0DQDJHU

/& 6\VWHP

2Q�OLQH 5XOH
'DWD�3DUW
0DQDJHU

5('20
FRPSLOHU

$SSOLFDWLRQ
'RPDLQ

'DWD %DVH

6FKHGXOLQJ
$SSOLFDWLRQ

3ODQQHU

0HVVDJH

'LVSDWFKHU

$WWULEXWH

(YDOXDWRU

5XOH

&KHFNLQJ

0HFKDQLVP

5XOHV

$FWLYLWLHV

3URSHUWLHV

$JJUHJDWLRQ

+LHUDUFK\

)LJXUH �� /& V\VWHP DUFKLWHFWXUH

With the receipt of the schedule, the rule system
creates all the activity objects of the aggregation hierarchy
corresponding to the activity composition rules. Activity
composition rules of the form “create a shift object when
there exist 11 hours of rest period between two flight
objects” determine the shape of the aggregation hierarchy
and are part of the application domain configuration. The
properties and the constraints, associated with each
activity object, have already been defined by the rule
manager in terms of the REDOM language. After the
aggregation hierarchy is completed, the rule system
performs the attribute evaluations and the constraint
checking. The On-line Rule Data-Part Manager supports
the on-line manipulation of the rule parameters, enabling
planners to test alternative what-if scenarios without
recompiling the rule set.

3. Abstract Data Access and Application
Domain Configuration

The Rule Checking Mechanism of the LC system
needs information concerning domain activities and
resources (e.g., the arrival time of a flight, the qualifi-
cations of a crew member, the type of an aircraft), in order
to calculate properties and check the constraints. This
information is stored in application specific data bases. A
global enterprise LC system should be able to work with
different data base environments because different
computer systems in the same enterprise may access
different data bases. The transition to different application
domains would be also much more painful if the system

was tightly coupled with a particular database
management scheme. This was the motivation for the
abstract data access mechanism of the LC.

A number of identifiers are designated by the rule
manager as keywords of the specific problem domain.
Keywords are used to easily access information for
domain specific activities and resources, which are
located in a particular database. They are declared as part
of the corresponding activities, during the creation phase
of the specific problem domain object-model and are
defined during the creation phase of the application
object-model. They are supplied at run time by the
scheduling process through a message protocol, providing
the LC with the necessary independence from the
database scheme of the client system.

The values of the keywords may be retrieved from any
possible database management system as long as an API
is supplied from the user of the particular data base. This
kind of an API should consist from a set of functions that
given a keyword name and an activity identifier, return the
value that is stored in the database. A prototype
declaration example of the main function for the retrieval
of keywords might be:

 value_type get_keyword(String <keyword_name>,
 TypeAct <activity_type>,
 int <activity_identifier>);

Figure 6, shows the retrieving mechanism of the
keyword values. Using the concept of keywords the same
low level representation of a common rule-set handled by
the LC server, can be used by different processes that use
different database systems.

/& 6HUYHU

'$<6< (GLWRU '$<6< (GLWRU

5XOHVHWV

/& &OLHQW ,

H�J�� $XWRPDWLF

5HVFKHGXOHU

/& &OLHQW ,,

H�J�� *8,

$LUOLQH

3ODQQHU

5XOH

0DQDJHU

2UDFOH
5HDO 7LPH

'DWD %DVH

/HJDF\ 6\VWHP� 6HUYHU RI D

SURSULHWDU\ '%06

JHWBNH\ZRUG��GHSDUWXUH��/(*����

)LJXUH �� 5HWULHYLQJ PHFKDQLVP RI NH\ZRUGV

For a client/server architecture where the LC system is
the server process and the client process creates sets of
activities to be evaluated and/or tested, the keyword
values can be supplied by the client process. The LC
server requests keyword values from the client process.
The client process must use a keyword server that acts as
an intermediate layer between the LC system and the
database which creates an abstract retrieving mechanism

of the keyword values. When working in a network
environment and the global access of information occurs
frequently the latency of the network is a major computa-
tional constraint. A caching mechanism has been develo-
ped in order to reduce the delays created by the distant
transfer of data. The LC server stores the data retrieved by
a request over the network and if a new request for the
same data appears, the cached data is returned.

The application domain configuration is realized
mainly through a configuration file that supplies the
typical structure of each primitive and composite activity.
This file defines the object model of the user’s problem
domain. The ACTIVITY reserved word declares an
activity type that is associated directly or indirectly with
rules. An activity declaration consists of component
activities, neighbor components, keyword names,
complex property names, and names of applied
constraints. For the airline domain typical activities
declared in the configuration file are: leg, shift, rotation,
roster, simulation, vacation, training, standby, rest etc. For
example, shift is an activity that the user can extend with
new properties and constraints using the inheritance
capability of the REDOM language. Thus, the user has the
ability to define new activities and incorporate new
keyword names in the REDOM language. A typical
activity description of the configuration file follows.

ACTIVITY shift
NEIGHBORS:

 shift, rest;
COMPONENTS:

 leg, simulation, training;
KEYWORDS:

 ac_type: string, departure: tabs;
PROPERTIES:

 duty_start : tabs,
 duty_end : tabs,
 duty_period : trel;
CONSTRAINTS:

max_duty_time;
END
where tabs, trel, string are built-in REDOM language data types.

4. Enterprise-wide LC Engine Sharing

The LC system presented in section 2 has been
integrated at Lufthansa with a Graphical User Interface
(GUI) for manual planning [4] and with an Automatic
Rescheduling System (ARS) [1] for automatic planning.
The client/server model for network applications has been
used. The interaction between LC clients and the LC
server is based on a three-layer protocol stack (Figure 7).

The LC application layer protocol reflects the LC API
[8], that provides for the attribute/property evaluations,
the legality checking and the on line rule data-part
management services. Examples of such services include:
• Open a line of work (low).

• Close a low.
• Add new activities or remove activities to/from the low.
• Check the legality of the low.
• Get the value of a property (e.g., trip cost, pay cost, etc.)
• Turn on/off a rule.
• Update a rule parameter value (e.g., rule limits, etc.)
• Get the aggregation hierarchy created so far.

LC server

0HVVDJH

.LW

7UDQVSRUW

/& FOLHQW

Message
Kit

Transport

LC protoco l

Message
protocol

TCP/ IP

)LJXUH �� $ ��OD\HU LQWHUDFWLRQ PRGHO

The underlying message protocol determines the
structure of the exchanged messages to transfer
commands and data. Through these messages the client
can send the activity data, ask for legality checking, etc.
After sending a request the client will get a response, e.g.,
the result of the legality check, the value of an attribute
evaluation, etc. The server, after receiving a message
request from a client and in accordance with the message
command, it calls the C++ methods of the LC server. The
Message Kit layer provides an API to the application
layer with services such as create an endpoint,
send/receive a message command, send/receive a message
response, connect/disconnect to LC server, reset commu-
nication, time-out communication.

Finally, the message protocol is based on the
conventional TCP/IP protocol. The transport socket inter-
face [13] is used as the inter-process communication
mechanism. This low level mechanism was preferred be-
cause the primal concern was for the performance and be-
cause of its availability in every hardware platform used.

Figure 8 depicts the distributed legality checking
model. The LC server presented up to now is represented
with the darker box. The complete integration
environment requires some additional components. First
of all there is a daemon process, named as LC Daemon.
This is a concurrent server, it listens to a well-known
endpoint and waits for connections from client processes.
When there is a connection request the concurrent server
invokes another process to handle the client request.

A client request is served initially by a process, named
as LC Agent. Its purpose is to set-up the legality session
and start the execution of the actual LC server instance.
This is necessary since a client may select among several
rule-sets for the legality checking process. The execution
of the LC server instance may be either local or remote
depending on the computational and response needs of the

calling client. For the interaction with the client a special
protocol, named as agent-protocol, has been defined. The
LC agent has basically the following responsibilities:
1. To authorize the client and control the right access of

the services. For example a user may be able to check
the legality of the schedule but forbidden to alter the
data parameters or access attribute evaluation data for
security reasons.

2. To get the activity configuration file specifying the
problem domain.

3. To get the REDOM rule-file description submitted by
the client.

4. To invoke the rule translator in order to create, the
runtime instance of the LC.

5. The management of the LC server instances, i.e.,
loading, unloading, deleting, dynamic endpoint
assignment of the various specific LC servers. The
client may request the loading of an already compiled
rule-set by sending its name. A dynamic endpoint
assignment is utilized for the loading service.

/&

'DHPRQ

/&

$JHQW

IRUN��

IRUN��

*8,

/& 6HUYHU

,QVWDQFH

/&�SURWRFRO

$JHQW�SURWRFRO

/& FOLHQW

'DWDEDVH

H[HF��

&RQQHFW 5HTXHVW

/&

$JHQW

$56

/& 6HUYHU

,QVWDQFH

/&�SURWRFRO

LC client

'DWDEDVH

H[HF��

&RQQHFW 5HTXHVW

NH\ZRUGV FKDQQHO

NH\ZRUGV FKDQQHO$JHQW�SURWRFRO

)LJXUH �� 'LVWULEXWHG OHJDOLW\ FKHFNLQJ PRGHO

The actual legality checking and attribute evaluation
services are provided by the LC server instance. The
approach of separating the management services from the
legality services improves the efficiency and the
extensibility of the system as the management of
operations, not involving the legality checking operation
itself, are kept out of the LC server. This makes the LC
server responsible for the management of multiple activity
chains of the same user and their legality checking.

For the evaluation of the activities properties, keyword
values are sometimes necessary. Each time a keyword
value is needed the LC server instance requests it from the
keyword server located at the client side. For each request
the keyword name and the activity identifier are passed to
the keyword server. The keyword server interacts with the

local DBMS and returns the corresponding value. For the
implementation of this scheme, a secondary endpoint is
required for the communication of keyword values. The
LC server instance has to establish a secondary channel
with the client so that it can access the keyword values.

The distributed LC model allows the existence of
redundant LC server instances. Redundant servers (LC
server instances of the same rule-set) are desirable to
allow for load balancing and failure resilience. Typically,
each LC client is serviced by a distinct LC server
instance. Currently, there is one ARS, and up to four GUI
processes that have to connect to the LC server. In
particular, at the set-up phase of the real time resche-
duling system, more than 10,000 lines of work must be
checked for legality. This requires more than half of a
computing hour if a single LC server (and client) is
involved. The existence of multiple LC servers signifi-
cantly reduces the computation time. In case of a failure
the mechanism that requests the service will detect the LC
server failure and transfer through the LC agent the
request to another server if possible. If no alternative
server exists, the client is informed that the service is
unavailable and a new LC server must be started.

In Figure 9, a possible interaction scenario between the
Legality Checking System and an LC client, is presented.
In step 1, the client submits a REDOM rule-file and the
LC agent invokes the rule translator to create the low level
rule binary. This low level rule binary is then linked with
other library modules in order to create the specific LC
server instance. The result of the compilation phase is
transmitted to the client, with the report of possible errors.
If the compilation phase is successful the client may send
a request (Step 5) for the loading of the new LC server
(Step 6). The client then connects with the LC server
(Step 8) through the assigned port number returned at
Step 7. Next, the client sends the activity chain to be
checked (Step 9). The client can then send a request in
order to start the legality checking process (Step 11) of
the activity chain and the legality checking phase is
entered (Steps 12, 13, 14). Afterwards, the legality
checking result is reported to the client (Step 15). The
client may then send some other activities to be checked
(Step 9) or unload the LC server (Step 17).

The employment of a rule checking and attribute
evaluation system as an enterprise-wide legality/evaluator
server for all personnel related computer systems of an
airline company is feasible and practical. Replacing the
built-in legality checking procedure of existing scheduling
applications with an association to the enterprise legality
server has primary advantages. First of all the dynamic
modification of the rules without disturbing and risking
the integrity of the application. In addition, this
methodology provides a single system for maintenance
and support and a common language to express all the

rules. The REDOM language has been proven in practice
capable of expressing all the necessary rules in the
Lufthansa operating environment.

&OLHQW
/HJDOLW\ &KHFNLQJ

6\VWHP
�� 6XEPLW 5('20 ILOH

�� &DOO 5('20

FRPSLOHU�� 5HSRUW FRPSLODWLRQ UHVXOW

�� &KHFN

FRPSLODWLRQ

UHVXOW �� 5HTXHVW ORDGLQJ RI /& VHUYHU

�� /RDG /&

VHUYHU LQVWDQFH

�� &RQQHFW WR /& VHUYHU

�� 6HQG DFWLYLW\ FKDLQ

��� 5HTXHVW NH\ZRUG YDOXHV

��� 5HFHLYH NH\ZRUG YDOXHV

��� &KHFN

OHJDOLW\

��� 5HSRUW OHJDOLW\ FKHFNLQJ UHVXOW

��� &ORVH FRQQHFWLRQ

��� 8QORDG

/& VHUYHU

�� 5HWXUQ DVVLJQHG SRUW QXPEHU

��� 5HWXUQ DFWLYLW\ DJJUHJDWLRQ KLHUDUFK\

��� 5HTXHVW OHJDOLW\ FKHFNLQJ

��� 5HTXHVW /& VHUYHU XQORDGLQJ

)LJXUH �� $ SRVVLEOH LQWHUDFWLRQ VFHQDULR

5. Metrics

The distributed computing environment consisted of a
network of HP9000-715 workstations interconnected both
with a 10 Mpbs Ethernet and a 100 Mbps FDDI network.
The implementation used the TCP socket interface as the
inter-process communication mechanism. In addition, the
system makes use of Unix-domain stream sockets [13] as
an alternative to TCP for local communication between
the client and the server, to improve latency, typically by
a factor of up to five. For the benchmark process, an
implementation that uses the LC system as a library linked
to the client application, was also available. The LC client
application used, was a graphical user interface. The user
creates chains of activities and then sends them to the LC
server for legality checking.

In order to check a line of work (low), the client
application and the LC server have to exchange a
minimum of 8 messages. These messages specify the
requests and the corresponding responses for operations
such as to open a low, to add the activities, to check the
low and to close the low. Additional messages may be
exchanged for accessing the keyword values or in the case
of incremental legality checking, i.e., when the activities
of the low are added one by one, and several intermediate
legality checks must be performed. The size of the messa-
ges to be exchanged is always small, less than 1024 bytes,
which makes the latency of the interconnection network
the dominating factor of the communication overhead.

Table 1 gives the performance results of the distributed
LC system. We report the time to check four typical line
of works of different sizes. The complexity of the rule-set
in use and the number of the activities contained in the
low determine the computation time of the legality

checking operation. The measurements have been done
after the TCP connection has been established. In
addition, in every case, we have made all the necessary
keyword values available locally in the cache, before
checking the legality.

*times
in ms

TC
Ether

P
FDDI

Unix
Streams Lib

TCP ov
Ether

erhead
FDDI

Streams
overhead

low1 (23) 519* 515.4 509.9 506 2.6% 1.8% 0.7%
low2 (15) 366.9 363.4 357.6 354 3.6% 2.6% 1%
low3 (13) 280.8 277.3 271.4 268 4.7% 3.5% 1.3%
low4 (11) 212.7 209.3 203.4 200 6.3% 4.6% 1.7%

7DEOH �� 0HWULFV RI WKH GLVWULEXWHG /& V\VWHP

For applications like the GUIs or management tools
where manual operations are performed the TCP over-
head can be acceptable. However, for computationally
intensive real-time systems like the automatic re-scheduler
or the automatic crew schedule planning system, a local
inter-process communication mechanism is necessary to
reduce the overhead. Low latency networks [2] and
optimized message passing implementations [12] which
avoid operating system intervention or complicated
protocol layers of traditional local area networks can
make the network-wide server more viable even for the
computationally intensive applications.

6. Conclusions

The use of decentralized workstation based applica-
tions has been an effective alternative to the mainframe
model for most industrial environments. However, this
decentralized model, in contrast with the mainframe era,
suffers when global concepts and rules must be re-
implemented in several applications and computers. In the
airline industry, in particular, there exist various work-
station based applications (e.g., crew planning, aircraft
scheduling, real time rescheduling) that need to evaluate a
set of company and state regulations in various instances
of their solution process. In this paper a methodology to
unify the attribute evaluation needs of several applications
and to provide a global legality checking service was
presented. The main advantage of the proposed client-
server approach is the increased reliability of the legality
system and the unification of the rule implementation and
storage characteristic. Some applications could have a
local instance of the legality server if this is required by
its intense rule computational needs in order to avoid the
potential communication overhead.

This approach to attribute evaluation and legality
checking is currently being tested for use at the Lufthansa
crew scheduling department. The object oriented design
and implementation of the server makes natural its

adoption by a CORBA (common object request broker
architecture) [11] based distributed computing environ-
ment. A distributed object computing framework will
enable the interworking between workstation-based appli-
cations at higher levels of abstraction and components to
collaborate more efficiently and transparently. This will
leverage the usability of the system as other user programs
may use the CORBA services to have a legality checker
module as if it was a local object. The current plans also
involve the creation of a JAVA based interface so that the
system can be used for the new Internet based work
assignment selection by the pilots of an airline company.

References

[1] G. Baues et. al., DAYSY Automatic Rescheduler: Detailed
Design Specification, DAYSY EP8402 TR D.5.3.4,
Cosytec SA, Orsay Cedex, France, 1996.

[2] N.J. Boden et. al., “Myrinet: A gigabit per second Local
Area Network”, IEEE-Micro, 15(1):29-36, Feb. 1995.

[3] CARMEN PAC 5.0 - User’s Reference Manual, Carmen
Systems AB, Gothenburg, Sweden, 1997.

[4] L. Chudant et. al., DAYSY Rotation Editor: Man-Machine
Interface Specification, DAYSY EP8402 TR D.7.4.2,
Sema Group SA, Paris, France, 1996.

[5] DAYSY consortium, Technical annex for the Esprit
project 8402: Day-to-day resource management systems,
DAYSY, January 1994.

[6] Deutsche Lufthansa AG NE 4, Crew Management Metrics,
DAYSY EP8402 TR D.8.2.1, Frankfurt, Germany, 1996.

[7] C. Goumopoulos et. al., Syntactic and Semantic Definition
of REDOM rule language, DAYSY EP8402 TR D.4.2,
Patras, Greece, 1996.

[8] C. Goumopoulos, and P. Alefragis, Legality Checker C++
Application Programming Interface version 1.1, DAYSY
EP8402 TR D.4.4.2, Patras, Greece, 1997.

[9] G.W. Graves et. al., “Flight Crew Scheduling”, Manage-
ment Science, vol. 39, no. 6, pp. 736-745, June 1993.

[10] Nanda, R., and J. Browne, Introduction to Employee
Scheduling, John Wiley & Sons, New York, June 1992.

[11] OMG, The Common Object Request Broker: Architecture
and Specification, revision 2.0, 1995.

[12] S. Pakin et. al., “Fast Messages: Efficient, Portable Com-
munication for Workstation Clusters and MPPs”, IEEE
Concurrency, vol. 5, no. 2, April - June 1997.

[13] Stevens, W.R., Unix Network Programming Prentice-Hall,
1990.

[14] Suhl, L., Computer-aided scheduling - an airline per-
spective, Gabler Edition Wissenschaft, Wiesbaden, 1995.

[15] K. Thrampoulidis et. al., “REDOM: An OO Language to
Define and On Line Manipulate Regulations in the
Resource (Re)Scheduling Problem”, Software Practice and
Experience, vol 27, no 10, pp. 1135-1161, 1997.

[16] K. Thrampoulidis, C. Goumopoulos, and E. Housos, “Rule
Handling in the day-to-day Resource Management
problem: an Object-Oriented approach.”, Information and
Software Technology, vol 39, pp. 185-193, 1997.

